FPGA Accelerator for Meta-Recognition Anomaly Detection: Case of Burned Area Detection
نویسندگان
چکیده
Optical remote sensing instruments accumulate abundant data from across all of the earth's land surfaces, making it possible both to understand effects climate change and monitor, investigate, manage ground-level events in detail. Processing using resources located near on-board satellite sensors can bring major benefits terms minimizing analysis time quickly initiating active actions critical situations. In missions, long-term production algorithms may encounter unexplored samples, i.e., abnormal events, need be able discriminate take correct action. this matter, authors present a field programmable gate array (FPGA)-based solution for natural anomaly detection multispectral imagery deep convolutional neural networks. The weather-induced hazards disasters, considered anomalies sense, are discovered by modeling an detector on hybrid system that is hardware efficient. proposed approach assembled Xilinx Zynq UltraScale+ XCZU9EG multiprocessor system-on-chip (MPSoC) device, where model scaled into FPGA logic, followed downstream statistical meta-recognition predictor. accelerator has produced notable results identifying contemporary hazard, burned areas, scenes acquired Sentinel-2 over Europe, Spain France. implemented algorithm achieved equivalent speedup 4.46× 4.5× lower power consumption than implementation Tesla K80 GPU.
منابع مشابه
FPGA Implementation of Skin Tone Detection Accelerator for Face Detection
Face detection in image sequence has been an active research area in the computer vision field in recent years due to its potential applications such as monitoring and surveillance, human computer interfaces, smart rooms, intelligent robots, and biomedical image analysis. Face detection is based on identifying and locating a human face in images regardless of size, position, and condition. An a...
متن کاملislanding detection methods for microgrids
امروزه استفاده از منابع انرژی پراکنده کاربرد وسیعی یافته است . اگر چه این منابع بسیاری از مشکلات شبکه را حل می کنند اما زیاد شدن آنها مسائل فراوانی برای سیستم قدرت به همراه دارد . استفاده از میکروشبکه راه حلی است که علاوه بر استفاده از مزایای منابع انرژی پراکنده برخی از مشکلات ایجاد شده توسط آنها را نیز منتفی می کند . همچنین میکروشبکه ها کیفیت برق و قابلیت اطمینان تامین انرژی مشترکان را افزایش ...
15 صفحه اولmetrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)
هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...
Nonparametric Spectral-Spatial Anomaly Detection
Due to abundant spectral information contained in the hyperspectral images, they are suitable data for anomalous targets detection. The use of spatial features in addition to spectral ones can improve the anomaly detection performance. An anomaly detector, called nonparametric spectral-spatial detector (NSSD), is proposed in this work which utilizes the benefits of spatial features and local st...
متن کامل3D Gabor Based Hyperspectral Anomaly Detection
Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
سال: 2023
ISSN: ['2151-1535', '1939-1404']
DOI: https://doi.org/10.1109/jstars.2023.3273309